Okklusionsspray 75ml # Coltène/Whaledent GmbH & Co. KG Version No: 1.1 Safety Data Sheet (Conforms to Annex II of REACH (1907/2006) - Regulation 2020/878) Issue Date: **04/07/2022**Print Date: **02/08/2024**L.REACH.CHE.EN # SECTION 1 Identification of the substance / mixture and of the company / undertaking # 1.1. Product Identifier | Product name | Okklusionsspray 75ml | | |-------------------------------|--|--| | Chemical Name | p-butane | | | Synonyms | HANEL, Okklu-top rot REF 480 410, Okklu-top grün REF 480 411 | | | Proper shipping name | AEROSOLS | | | Chemical formula | Not Applicable | | | Other means of identification | UFI:V520-U010-X001-C6W1 | | # 1.2. Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Application is by spray atomisation from a hand held aerosol pack | | |--------------------------|---|--| | Uses advised against | No specific uses advised against are identified. | | # 1.3. Details of the manufacturer or supplier of the safety data sheet | Registered company name | Coltène/Whaledent GmbH & Co. KG | | |-------------------------|--|--| | Address | ffeisenstrasse 30 89129 Langenau Germany | | | Telephone | +49 (7345) 805 0 | | | Fax | +49 (7345) 805 201 | | | Website | www.coltene.com | | | Email | msds@coltene.com | | # 1.4. Emergency telephone number | Association / Organisation | CHEMWATCH EMERGENCY RESPONSE (24/7) | | |-----------------------------------|-------------------------------------|--| | Emergency telephone numbers | +41 44 551 43 62 | | | Other emergency telephone numbers | +61 3 9573 3188 | | Once connected and if the message is not in your preferred language then please dial 01 Une fois connecté et si le message n'est pas dans votre langue préférée alors s'il vous plaît cadran 07 Una volta collegato, se il messaggio non é nella lingua di preferenza, si prega di digitare 08 Sobald die Verbindung hergestellt und wenn die Nachricht nicht in der gewünschten Sprache dann wählen Sie bitte 10 # **SECTION 2 Hazards identification** # 2.1. Classification of the substance or mixture | Classification according to regulation (EC) No 1272/2008 [CLP] and amendments [1] | H222+H229 - Aerosols Category 1 | |---|--| | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | # 2.2. Label elements Version No: 1.1 # Page 2 of 15 Okklusionsspray 75ml Issue Date: **04/07/2022** Print Date: **02/08/2024** Hazard pictogram(s) Signal word Danger # Hazard statement(s) H222+H229 Extremely flammable aerosol. Pressurized container: may burst if heated. # Supplementary statement(s) **EUH044** Risk of explosion if heated under confinement. # Precautionary statement(s) Prevention | P210 | P210 Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | | |------|---|--| | P211 | Do not spray on an open flame or other ignition source. | | | P251 | Do not pierce or burn, even after use. | | # Precautionary statement(s) Response Not Applicable # Precautionary statement(s) Storage P410+P412 Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F. # Precautionary statement(s) Disposal Not Applicable Material does not contain any CLP Article 18 substances. # 2.3. Other hazards Inhalation may produce health damage*. Cumulative effects may result following exposure*. May produce discomfort of the respiratory system $\!\!\!\!^\star.$ Repeated exposure potentially causes skin dryness and cracking*. Vapours potentially cause drowsiness and dizziness*. iso-butane Listed in the Europe Regulation (EC) No 1907/2006 - Annex XVII (Restrictions may apply) # **SECTION 3 Composition / information on ingredients** # 3.1.Substances See 'Composition on ingredients' in Section 3.2 # 3.2.Mixtures | 1. CAS No
2.EC No
3.Index No
4.REACH No | %
[weight] | Name | Classification according to regulation (EC) No 1272/2008 [CLP] and amendments | SCL / M-Factor | Nanoform Particle
Characteristics | |---|---------------|----------------|---|---|--------------------------------------| | 1. 75-28-5.
2.200-857-2
3.601-004-00-0 601-004-01-
8
4.Not Available | 50-100 | iso-
butane | Flammable Gases Category 1A, Gases Under
Pressure (Liquefied Gas); H220, H280, EUH044 ^[1] | Not Available Acute M factor: Not Available Chronic M factor: Not Available | Not Available | | Legend: 1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 3. Classification drawn from C&L * EU IOELVs available; [e] Substance identified as having endocrine disrupting properties | | | 3. Classification drawn from | | | # **SECTION 4 First aid measures** # 4.1. Description of first aid measures Version No: **1.1** Page **3** of **15** Issue Date: **04/07/2022** Print Date: 02/08/2024 #### **Okklusionsspray 75ml** | Eye Contact | If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|---| | Skin Contact | If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation. | | Inhalation | If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | | Ingestion | Not considered a normal route of entry. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus. | #### 4.2 Most important symptoms and effects, both acute and delayed See Section 11 # 4.3. Indication of any immediate medical attention and special treatment needed For petroleum distillates - In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration. - · Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function. - \cdot Positive pressure ventilation may be necessary. - · Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia. - · After the initial episode, individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated. - · Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications. - · Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators. Treat symptomatically. # **SECTION 5 Firefighting measures** # 5.1. Extinguishing media SMALL FIRE: ▶ Water spray, dry chemical or CO2 LARGE FIRE: Water spray or fog. # 5.2. Special hazards arising from the substrate or mixture | Fire I | ncompatibility | |--------|----------------| | | | Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result # 5.3. Advice for firefighters - Alert Fire
Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. - ▶ Prevent, by any means available, spillage from entering drains or water course. - Fire Fighting If safe, switch off electrical equipment until vapour fire hazard removed. - ▶ DO NOT approach containers suspected to be hot. - ▶ Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use. # Fire/Explosion Hazard - Liquid and vapour are highly flammable. - Severe fire hazard when exposed to heat or flame. Version No: 1.1 Page 4 of 15 Issue Date: 04/07/2022 Print Date: 02/08/2024 # **Okklusionsspray 75ml** Vapour forms an explosive mixture with air. • Severe explosion hazard, in the form of vapour, when exposed to flame or spark. Vapour may travel a considerable distance to source of ignition. ▶ Heating may cause expansion or decomposition with violent container rupture. - Aerosol cans may explode on exposure to naked flames. - Rupturing containers may rocket and scatter burning materials. - Hazards may not be restricted to pressure effects. - ▶ May emit acrid, poisonous or corrosive fumes. - ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: carbon monoxide (CO) Combustible. Will burn if ignited. carbon dioxide (CO2) other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. # **SECTION 6 Accidental release measures** # 6.1. Personal precautions, protective equipment and emergency procedures See section 8 # 6.2. Environmental precautions See section 12 # 6.3. Methods and material for containment and cleaning up | Minor Spills | Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Wear protective clothing, impervious gloves and safety glasses. Shut off all possible sources of ignition and increase ventilation. | |--------------|---| | | Wipe up. If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely. | | Major Spills | Clear area of all unprotected personnel and move upwind. Alert Emergency Authority and advise them of the location and nature of hazard. May be violently or explosively reactive. Wear full body clothing with breathing apparatus. Prevent by any means available, spillage from entering drains and water-courses. Consider evacuation. Shut off all possible sources of ignition and increase ventilation. No smoking or naked lights within area. Use extreme caution to prevent violent reaction. Stop leak only if safe to so do. Water spray or fog may be used to disperse vapour. DO NOT enter confined space where gas may have collected. Keep area clear until gas has dispersed. DO NOT exert excessive pressure on valve; DO NOTattempt to operate damaged valve. | # 6.4. Reference to other sections Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 Handling and storage** # 7.1. Precautions for safe handling # Safe handling ▶ Avoid all personal contact, including inhalation. ▶ Wear protective clothing when risk of exposure occurs. ▶ Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. • Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. ▶ When handling, **DO NOT** eat, drink or smoke. ▶ **DO NOT** incinerate or puncture aerosol cans. ▶ DO NOT spray directly on humans, exposed food or food utensils. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. Version No: **1.1** Page **5** of **15** Issue Date: **04/07/2022** Print Date: 02/08/2024 # **Okklusionsspray 75ml** | | Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are
maintained. | |-------------------------------|--| | Fire and explosion protection | See section 5 | | Other information | Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can Store in original containers in approved flammable liquid storage area. DO NOT store in pits, depressions, basements or areas where vapours may be trapped. No smoking, naked lights, heat or ignition sources. Keep containers securely sealed. Contents under pressure. Store away from incompatible materials. Store in a cool, dry, well ventilated area. Avoid storage at temperatures higher than 40 deg C. Store in an upright position. Protect containers against physical damage. Check regularly for spills and leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. | # 7.2. Conditions for safe storage, including any incompatibilities | Suitable container | Aerosol dispenser. Check that containers are clearly labelled. | | |---|--|--| | Storage incompatibility | void reaction with oxidising agents | | | Hazard categories in
accordance with
Regulation (EC) No
2012/18/EU (Seveso III) | P3b: Flammable Aerosols | | | Qualifying quantity
(tonnes) of dangerous
substances as referred to
in Article 3(10) for the
application of | P3b Lower- / Upper-tier requirements: 5 000 (net) / 50 000 (net) | | # 7.3. Specific end use(s) See section 1.2 # SECTION 8 Exposure controls / personal protection # 8.1. Control parameters | Ingredient | DNELs
Exposure Pattern Worker | PNECs
Compartment | |---------------|----------------------------------|----------------------| | Not Available | Not Available | Not Available | ^{*} Values for General Population # Occupational Exposure Limits (OEL) # INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---|------------|---------------|----------------------|-----------------------|---------------|---------------| | Switzerland Occupational Exposure Limits (German) | iso-butane | iso-Butan | 800 ppm / 1900 mg/m3 | 7600 mg/m3 / 3200 ppm | Not Available | Not Available | # **Emergency Limits** | iso-butane 5500* ppm 17000** ppm 53000*** ppm | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |---|------------|-----------|--------|--------| | | iso-butane | 5500* nnm | | | | Ingredient | Original IDLH | Revised IDLH | |------------|---------------|---------------| | iso-butane | Not Available | Not Available | # MATERIAL DATA For butane: Odour Threshold Value: 2591 ppm (recognition) Butane in common with other homologues in the straight chain saturated aliphatic hydrocarbon series is not characterised by its toxicity but by its narcosis-inducing effects at high concentrations. The TLV is based on analogy with pentane by comparing their lower explosive limits in air. It is concluded that this limit will protect workers against the significant risk of drowsiness and other narcotic effects. Odour Safety Factor(OSF) OSF=0.22 (n-BUTANE) Version No: 1.1 Page 6 of 15 Issue Date: 04/07/2022 #### Okklusionsspray 75ml 8.2. Exposure controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers
and will typically be independent of worker interactions to provide this high level of protection. Print Date: 02/08/2024 The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator, Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # 8.2.1. Appropriate engineering controls Type of Contaminant: Speed: aerosols, (released at low velocity into zone of active generation) 0.5-1 m/s direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid 1-2.5 m/s (200-500 f/min.) Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. # 8.2.2. Individual protection measures, such as personal protective equipment # Safety glasses. - Safety glasses with side shields. - ► Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent] - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. # Safety glasses with side shields # Eye and face protection - Chemical goggles. - ▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] - Close fitting gas tight goggles - No special equipment for minor exposure i.e. when handling small quantities. - ▶ OTHERWISE: For potentially moderate or heavy exposures: - Safety glasses with side shields. - ▶ NOTE: Contact lenses pose a special hazard; soft lenses may absorb irritants and ALL lenses concentrate them. # Skin protection # See Hand protection below # Hands/feet protection - ▶ Wear general protective gloves, eg. light weight rubber gloves. - No special equipment needed when handling small quantities. - OTHERWISE: - For potentially moderate exposures: - Wear general protective gloves, eg. light weight rubber gloves. - For potentially heavy exposures - Wear chemical protective gloves, eg. PVC. and safety footwear. Version No: 1.1 Page 7 of 15 Issue Date: 04/07/2022 Print Date: 02/08/2024 Print Date: 02/08/2024 # **Okklusionsspray 75ml** | Body protection | See Other protection below | |------------------|--| | Other protection | The clothing worn by process operators insulated from earth may develop static charges far higher (up to 100 times) than the minimum ignition energies for various flammable gas-air mixtures. This holds true for a wide range of clothing materials including cotton. Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn outermost. BRETHERICK: Handbook of Reactive Chemical Hazards. No special equipment needed when handling small quantities. OTHERWISE: Overalls. Skin cleansing cream. Eyewash unit. Do not spray on hot surfaces. | # Respiratory protection Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|------------------------| | up to 5 x ES | Air-line* | AX-2 | AX-PAPR-2 ^ | | up to 10 x ES | - | AX-3 | - | | 10+ x ES | - | Air-line** | - | - * Continuous Flow; ** Continuous-flow or positive pressure demand - ^ Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) • Generally not applicable. Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals. Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | Required minimum protection factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face
Respirator | Full-Face
Respirator | |------------------------------------|--|-------------------------|-------------------------| | up to 10 | 1000 | AX-AUS / Class 1 | - | | up to 50 | 1000 | - | AX-AUS / Class 1 | | up to 50 | 5000 | Airline * | - | | up to 100 | 5000 | - | AX-2 | | up to 100 | 10000 | - | AX-3 | | 100+ | | - | Airline** | ^{** -} Continuous-flow or positive pressure demand. A(All classes) = Organic vapours, B AUS or B1 = Acid gases, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 deg C) # 8.2.3. Environmental exposure controls See section 12 # **SECTION 9 Physical and chemical properties** # 9.1. Information on basic physical and chemical properties | Appearance | Packed as liquid under pressure and remains liquid only under pressure. Sudden release of pressure or leakage may result in rapid vapourisation with generation of a large volume
of highly flammable / explosive gas. | | | |------------------|--|---|---------------| | Physical state | Compressed Gas | Relative density (Water = 1) | 0.6 | | Odour | Not Available | Partition coefficient n-
octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature (°C) | Not Available | Version No: 1.1 Page 8 of 15 Issue Date: 04/07/2022 Print Date: 02/08/2024 Print Date: 02/08/2024 # **Okklusionsspray 75ml** | Melting point / freezing point (°C) | -159.4 | Viscosity (cSt) | Not Available | |--|----------------|--------------------------------------|---------------| | Initial boiling point and boiling range (°C) | -44 | Molecular weight (g/mol) | Not Available | | Flash point (°C) | 460 | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | 8.5 | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | 1.8 | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | 300.00 | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | | Nanoform Solubility | Not Available | Nanoform Particle
Characteristics | Not Available | | Particle Size | Not Available | | | #### 9.2. Other information Not Available # **SECTION 10 Stability and reactivity** | 10.1.Reactivity | See section 7.2 | |---|--| | 10.2. Chemical stability | Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur. | | 10.3. Possibility of
hazardous reactions | See section 7.2 | | 10.4. Conditions to avoid | See section 7.2 | | 10.5. Incompatible materials | See section 7.2 | | 10.6. Hazardous decomposition products | See section 5.3 | # **SECTION 11 Toxicological information** Inhaled Ingestion # 11.1. Information on hazard classes as defined in Regulation (EC) No 1272/2008 control measures be used in an occupational setting. High inhaled concentrations of mixed hydrocarbons may produce narcosis characterised by nausea, vomiting and lightheadedness. Inhalation of aerosols may produce severe pulmonary oedema, pneumonitis and pulmonary haemorrhage. Inhalation of petroleum hydrocarbons consisting substantially of low molecular weight species (typically C2-C12) may produce irritation of mucous membranes, incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and anaesthetic stupor. Massive exposures may produce central nervous system depression with sudden collapse and deep coma; fatalities have been recorded. Irritation of the brain and/or apnoeic anoxia may produce convulsions. Although recovery following overexposure is generally complete, cerebral micro-haemorrhage of focal post-inflammatory scarring may produce epileptiform seizures some months after the exposure. Pulmonary episodes may include chemical pneumonitis with oedema and haemorrhage. The lighter hydrocarbons may produce kidney and neurotoxic effects. Pulmonary irritancy increases with carbon chain length for paraffins and olefins. Alkenes produce pulmonary oedema at high concentrations. Liquid paraffins may produce anaesthesia and depressant actions leading to weakness, dizziness, slow and shallow respiration, unconsciousness, convulsions and death. C5-7 paraffins may also produce polyneuropathy. Aromatic hydrocarbons accumulate in lipid rich tissues (typically the brain, spinal cord and peripheral nerves) and may produce functional impairment manifested by nonspecific symptoms such as nausea, weakness, fatigue and vertigo; severe exposures may produce inebriation or unconsciousness. Many of the petroleum hydrocarbons are cardiac sensitisers and may cause ventricular fibrillations. WARNING: Intentional misuse by concentrating/inhaling contents may be lethal. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination Material is highly volatile and may guickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure. The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation. Not normally a hazard due to physical form of product. The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable Page 9 of 15 Issue Date: 04/07/2022 Version No: 1.1 Print Date: 02/08/2024 # Okklusionsspray 75ml | Skin Contact | The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Spray mist may produce discomfort Open cuts, abraded or irritated skin should not be exposed to this material | |--------------|---| | Еуе | Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn). Direct contact with the eye may not cause irritation because of the extreme volatility of the gas; however concentrated atmospheres may produce irritation after brief exposures | | Chronic | Long-term exposure to the product is not thought to produce chronic effects adverse to health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course. Principal route of occupational exposure to the gas is by inhalation. | | Okklusionsspray 75ml | TOXICITY | IRRITATION | | |----------------------|---|--|--| | Okkidsionsspray 75mi | Not Available | Not Available | | | | TOXICITY | IRRITATION | | | iso-butane | Inhalation (Rat) LC50: >13023 ppm4h ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | Legend: | 1 Value obtained from Europe ECHA Pegistered Subst | appear Acute toxicity 2 Value obtained from manufacturar's SDS | | | Legena. | Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | × | Reproductivity | × | | Serious Eye
Damage/Irritation | × | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | 🗶 – Data either not available or does not fill the criteria for classification Legend: Data available to make classification # 11.2 Information on other hazards # 11.2.1. Endocrine disrupting properties No evidence of endocrine disrupting properties were found in the current literature. # 11.2.2. Other information See Section 11.1 # **SECTION 12 Ecological information** # 12.1. Toxicity | | Endpoint | Test Duration (hr) | Species | Value | Source | |------------|------------------|--------------------|---|------------------|------------------| | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | LC50 | 96h | Fish | 24.11mg/l | 2 | | iso-butane | EC50 | 96h | Algae or other aquatic plants | 7.71mg/l | 2 | | | EC50(ECx) | 96h | Algae or other aquatic plants | 7.71mg/l | 2 | | Legend: | 4. US EPA, Ed | · | ne ECHA Registered Substances - Ecotoxicologica
Data 5. ECETOC Aquatic Hazard Assessment Data
Data 8. Vendor Data | • | | For petroleum distillates: Environmental fate: When petroleum
substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradationanother fate process-can also be significant. Version No: 1.1 Page 10 of 15 Issue Date: 04/07/2022 Okklusionsspray 75ml Print Date: 02/08/2024 As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons. Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes. The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials. #### Biodegradation: Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows: - (1) n-alkanes, especially in the C10-C25 range, which are degraded readily; - (2) isoalkanes: - (3) alkenes: - (4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms); - (5) monoaromatics: - (6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and - (7) higher molecular weight cycloalkanes (which may degrade very slowly. Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues. When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil #### Bioaccumulation: Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5 In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential. Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however. one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish. In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000. Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish. This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish # Ecotoxicity: Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil" was also tested and a 96-hour LC50 of 12 mg/L was determined The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L. Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L . All populations of phytoplankton returned to a steady state within 5 days of exposure In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality # For isobutane: Refrigerant Gas: Saturated Hydrocarbons have zero ozone depletion potential (ODP) and will photodegrade under atmospheric conditions. [Calor Gas] Version No: 1.1 Page 11 of 15 Issue Date: 04/07/2022 Print Date: 02/08/2024 Print Date: 02/08/2024 # **Okklusionsspray 75ml** Environmental Fate **Terrestrial fate:** An estimated Koc value of 35 suggests that isobutane will have very high mobility in soil. Its very high Henry's Law constant, 4.08 atm-cu m/mole, (calculated from its vapor pressure and water solubility, high vapor pressure, 2611 mm Hg at 25 deg C, and low adsorptivity to soil indicate that volatilisation will be an important fate process from both moist and dry soil surfaces. Isobutane is biodegradable, especially under acclimated conditions, and may biodegrade in soil. Aquatic fate: The estimated Koc value suggests that isobutane would not adsorb to sediment and particulate matter in the water column. Additional evidence that isobutane is not removed to sediment has been obtained from microcosm experiments. Isobutane will readily volatilise from water based on its estimated Henry's Law constant of 4.08 atm-cu m/mole. Estimated half-lives for a model river and
model lake are 2.2 hr and 3.0 days, respectively. An estimated BCF value of 74 based on the log Kow suggests that isobutane will not bioconcentrate in aquatic organisms. Results indicate that gas exchange is the dominant removal mechanism for isobutane gases from the water column following a hypothetical input. The volatilisation half-lives for isobutane from the water columns in natural estuaries are estimated to be 4.4 and 6.8 days at 20 and 10 deg C, respectively. Isobutane also biodegrades in the microcosm at a rate that is slower than for n-butane and falls between propane and ethane in susceptibility. Biodegradation of isobutane initially occurs with a half-lives of 16-26 days at 20 deg C and 33-139 days at 10 deg C, significantly slower than the loss predicted by gas exchange from typical natural estuaries. However, after a lag of 2-4 weeks, the biodegradation rate increases markedly so that in the case of chronic inputs, biodegradation can become the dominant removal mechanism. Atmospheric fate:: Isobutane is a gas at ordinary temperatures. It is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is 6.9 days, assuming a hydroxyl radical concn of 5x105 radicals per cubic cm. When isobutane was exposed to sunlight for 6 hr in a tedlar bag filled with Los Angeles air, 6% of the isobutane degraded The air contained 4529 ppb-C hydrocarbons and 870 ppb of NOX. The tropospheric loss of volatile hydrocarbons such as isobutane by wet and dry deposition are believed to be of minor importance. Indeed, isobutane assimilated into precipitation may evaporate during transport as well as being reemitted into the atmosphere after deposition. Isobutane is a contributor to the production of PAN (peroxyacyl nitrates) under photochemical smog conditions DO NOT discharge into sewer or waterways. # 12.2. Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|-------------------------|------------------| | iso-butane | HIGH | HIGH | # 12.3. Bioaccumulative potential | Ingredient | Bioaccumulation | |------------|------------------| | iso-butane | LOW (BCF = 1.97) | #### 12.4. Mobility in soil | Ingredient | Mobility | |------------|-----------------------| | iso-butane | LOW (Log KOC = 35.04) | # 12.5. Results of PBT and vPvB assessment | | Р | В | Т | |-------------------------|---------------|---------------|---------------| | Relevant available data | Not Available | Not Available | Not Available | | PBT | × | × | × | | vPvB | × | × | × | | PBT Criteria fulfilled? | | | No | | vPvB | | | No | # 12.6. Endocrine disrupting properties No evidence of endocrine disrupting properties were found in the current literature. # 12.7. Other adverse effects No evidence of ozone depleting properties were found in the current literature. # **SECTION 13 Disposal considerations** # 13.1. Waste treatment methods #### # **SECTION 14 Transport information** Page 12 of 15 Okklusionsspray 75ml Issue Date: **04/07/2022**Print Date: **02/08/2024** # **Labels Required** Marine Pollutant NO # Land transport (ADR-RID) | .and transport (ADR-RID) | | | | | |-------------------------------|-----------------------|-----------|-----------------|--| | 14.1. UN number or ID number | 1950 | | | | | 14.2. UN proper shipping name | AEROSOLS | | | | | 14.3. Transport hazard | Class | 2.1 | | | | class(es) | Subsidiary Hazard | Not Appli | able | | | 14.4. Packing group | Not Applicable | | | | | 14.5. Environmental hazard | Not Applicable | | | | | | Hazard identification | (Kemler) | Not Applicable | | | | Classification code | | 5F | | | 14.6. Special precautions | Hazard Label | | 2.1 | | | for user | Special provisions | | 190 327 344 625 | | | | Limited quantity | | 1 L | | | | Tunnel Restriction C | ode | D | | # Air transport (ICAO-IATA / DGR) | 14.1. UN number | 1950 | | | | |------------------------------------|--|------------------------------|-----------------------------------|--| | 14.2. UN proper shipping name | Aerosols, flammable (engine starting fluid); Aerosols, flammable | | | | | | ICAO/IATA Class | 2.1 | | | | 14.3. Transport hazard class(es) | ICAO / IATA Subsidiary Hazard | Not Applicable | | | | ciass(cs) | ERG Code | 10L | | | | 14.4. Packing group | Not Applicable | | | | | 14.5. Environmental hazard | Not Applicable | | | | | | Special provisions | | A145 A167 A802; A1 A145 A167 A802 | | | | Cargo Only Packing Instructions | | 203 | | | | Cargo Only Maximum Qty / Pack | | 150 kg | | | 14.6. Special precautions for user | Passenger and Cargo Packing Ir | structions | 203; Forbidden | | | ioi usei | Passenger and Cargo Maximum Qty / Pack | | 75 kg; Forbidden | | | | Passenger and Cargo Limited Qu | uantity Packing Instructions | Y203; Forbidden | | | | Passenger and Cargo Limited Maximum Qty / Pack | | 30 kg G; Forbidden | | # Sea transport (IMDG-Code / GGVSee) | oca transport (IIIIDO ocac | , 55,666, | | | | | |------------------------------------|---------------------------------------|----------------------------|--|--|--| | 14.1. UN number | 1950 | 1950 | | | | | 14.2. UN proper shipping name | AEROSOLS | | | | | | 14.3. Transport hazard | IMDG Class | 2.1 | | | | | class(es) | IMDG Subsidiary Hazard Not Applicable | | | | | | 14.4. Packing group | Not Applicable | | | | | | 14.5 Environmental hazard | Not Applicable | | | | | | 14.6. Special precautions for user | EMS Number | F-D , S-U | | | | | | Special provisions | 63 190 277 327 344 381 959 | | | | | | | | | | | Version No: 1.1 Page 13 of 15 Issue Date: 04/07/2022 Print Date: 02/08/2024 Print Date: 02/08/2024 # Okklusionsspray 75ml Limited Quantities 1000 ml # Inland waterways transport (ADN) | | _ ` _ ′ | | | | |------------------------------------|---------------------|--------------------|--|--| | 14.1. UN number | 1950 | | | | | 14.2. UN proper shipping name | AEROSOLS | | | | | 14.3. Transport hazard class(es) | 2.1 Not Applicable | | | | | 14.4. Packing group | Not Applicable | | | | | 14.5. Environmental hazard | Not Applicable | | | | | | Classification code | 5F | | | | | Special provisions | 190; 327; 344; 625 | | | | 14.6. Special precautions for user | Limited quantity | 1 L | | | | | Equipment required | PP, EX, A | | | | | Fire cones number | 1 | | | | | | | | | # 14.7. Maritime transport in bulk according to IMO instruments # 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |--------------|---------------| | iso-butane | Not Available | # 14.7.3. Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |--------------|---------------| | iso-butane | Not Available | # **SECTION 15 Regulatory information** # 15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture # iso-butane is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles EU REACH Regulation (EC) No 1907/2006 - Annex XVII (Appendix 1) Carcinogens: Category 1 A EU REACH Regulation (EC) No 1907/2006 - Annex XVII (Appendix 4) Germ cell mutagens: Category 1 B Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI Switzerland Occupational Exposure Limits (German) # **Additional Regulatory Information** Not Applicable This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable -: Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2020/878; Regulation (EC) No 1272/2008 as updated through ATPs. # Information according to 2012/18/EU (Seveso III): Seveso Category P3b # 15.2. Chemical safety assessment No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier. # **National Inventory Status** Version No: 1.1 Page 14 of 15 Issue Date: 04/07/2022 Print Date: 02/08/2024 # **Okklusionsspray 75ml** | National Inventory | Status | |--|--| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | Canada - DSL | Yes | | Canada - NDSL | No (iso-butane) | | China - IECSC | Yes | | Europe - EINEC / ELINCS /
NLP | Yes | | Japan - ENCS | Yes | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | Yes | | Russia - FBEPH | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | # **SECTION 16 Other information** | Revision Date | 04/07/2022 | |---------------|------------| | Initial Date | 14/02/2022 | # Full text Risk and Hazard codes | H220 | Extremely flammable gas. | |------|---| | H280 | Contains gas under pressure; may explode if heated. | # Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used
to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards: EN 166 Personal eye-protection EN 340 Protective clothing EN 374 Protective gloves against chemicals and micro-organisms EN 13832 Footwear protecting against chemicals EN 133 Respiratory protective devices # **Definitions and abbreviations** - ▶ PC TWA: Permissible Concentration-Time Weighted Average - ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit - ▶ IARC: International Agency for Research on Cancer - ▶ ACGIH: American Conference of Governmental Industrial Hygienists - ▶ STEL: Short Term Exposure Limit - ► TEEL: Temporary Emergency Exposure Limit。 - ▶ IDLH: Immediately Dangerous to Life or Health Concentrations - ▶ ES: Exposure Standard - OSF: Odour Safety Factor - ▶ NOAEL: No Observed Adverse Effect Level - ▶ LOAEL: Lowest Observed Adverse Effect Level - ▶ TLV: Threshold Limit Value - ▶ LOD: Limit Of Detection - ▶ OTV: Odour Threshold Value - ▶ BCF: BioConcentration Factors - ▶ BEI: Biological Exposure Index - ▶ DNEL: Derived No-Effect Level - ▶ PNEC: Predicted no-effect concentration Page **15** of **15** Issue Date: 04/07/2022 Version No: 1.1 Print Date: 02/08/2024 # Okklusionsspray 75ml ▶ AIIC: Australian Inventory of Industrial Chemicals ▶ DSL: Domestic Substances List ▶ NDSL: Non-Domestic Substances List ▶ IECSC: Inventory of Existing Chemical Substance in China ▶ EINECS: European INventory of Existing Commercial chemical Substances ▶ ELINCS: European List of Notified Chemical Substances ► NLP: No-Longer Polymers ▶ ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory ▶ NZIoC: New Zealand Inventory of Chemicals ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances ► TSCA: Toxic Substances Control Act ▶ TCSI: Taiwan Chemical Substance Inventory ▶ INSQ: Inventario Nacional de Sustancias Químicas ▶ NCI: National Chemical Inventory ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances Powered by AuthorITe, from Chemwatch.